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Abstract: In this paper, we address the imminent
problem which arises when researchers unjudiciously
use a linear and instantaneous (memoryless) model for
the source mixing structures of independent component
analysis (ICA), also known as blind source separation
(BSS), in persuit of separating noisy and frequently
nonstationary combined mother and fetal
electrocardiogram (ECG) signals from cutaneous
measurements under the following false assumptions. (1)
Sensors (electrodes) are instantaneous linear mixtures of
mother and fetal source signals. (2) Noise is an additive
Gaussian perturbation. (3) Mother and fetal ECG signals
are assumed to be stationary and linear, mutually
statistically independent and statistically independent
from noise. (4) Most of the second-order (SO) and
fourth-order (FO) blind source separation (BSS) methods
developed this last decade assume that third-order
cumulants vanish hence the need to use FO. All these
assumptions are not valid and will be challenged. We
will expose these vices without providing any significant
contributions for overcoming them. Rather, we provide a
framework for investigations which are based on
conformal mapping of nonlinear mixtures and novel
dynamic nonlinear structures with time-variant memory
to cater for quadratic coupling between mother and fetal
which is quasi-periodical and the concomitant (quasi)
cyclostationarity. Results given here show linear ICA
shortfalls in nonstationary environment which is
precipitated by quadratic coupling between mother and
fetal ECGs during events of synchronised QRS
complexes and P-waves and account for more than 20%
of the 100,000 maternal cardiac cycles obtained from
several clinical trials.

Keywords: Noninvasive fetal electrocardiogram, Blind
source separation, linear/nonlinear independent
component analysis, quadratically coupled sources,
nonlinear and nonstationary mixtures.

I. DISCUSSIONS

I.1 Issues for discussions
• The unsuitability of using linear independent

component analysis (ICA) or blind source
separation (BSS) to the problem of separating fetal
heartbeat from transabdominally measured signals.

• Wrong assumptions and conditions for solutions to
the above problem.

• Evidence of nonlinear coupling and (quasi)
cyclostationarity in the transabdominally measured
signals.

• Present techniques for nonlinear ICA only cater for
nonlinear mixtures and may not be adequate for
nonlinear mixtures of individually nonlinear
mother/fetal ECGs.

I.2 Linear Independent Component Analysis (ICA)
    Blind source separation is to recover unobservable
independent sources (or signals) from multiple observed
data masked by linear mixing. Most existing algorithms
for linear mixing models stem from the theory of the
independent component analysis (ICA) [1]-[3]. Most of
the second-order (SO) and fourth-order (FO) blind
source separation methods developed this decade are
aimed at blindly separating statistically independent
sources that are assumed zero-mean, stationary and
ergodic. Nevertheless, in many situations of practical
interest, such as in noninvasive fetal heartbeat
identification, the combined sources measured
transabdominally are (quasi) cyclostationary due to
nonlinear coupling. In these conditions it becomes
important to wander whether the performance of these
current SO and FO blind source separation methods
which have been developed for stationary source may be
affected by the potential nonstationarity of the latter
limiting the analysis to the SO and FO cumulant-based
blind source separation methods, the purpose of this
paper is to bring some answers to this important question
by looking at the nonlinearity, quadratic coupling and
nonstationarity during events of synchronised QRS
complexes and P-waves.

I.3 Wrong Assumptions in Mother and Fetal Source
      Separation
     Recently, Lathauwer et al. [4-9], Zarzoso et al. [10]
have attempted to separate mother and fetal
electrocardiograms from cutaneous 8-32 channel
recordings, by exploiting the second- and fourth-order
statistics because notably the solution to the ICA
problem lies in the fact that the assumption of statistical
independence is a key factor. Statistical independence is
relatively strong assumption but it is plausible in many
contexts because it arises from a lack of physical
relationship between the various sources. However, they
focus at the second-order and fourth-order level based on
the wrong assumption that the third-order cumulants for
mother and fetal vanish (which is not true). Third-order
cumulants do exist for mother and fetal ECGs and have
been successfully exploited in many analyses [24].
    Researchers in this field justify using linear mixtures
based on inaccuracies in the assumption that the transfer
from bioelectric current sources to body surface
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electrodes can be considered linear and resistive [21].
Even if this is justified as first approximation, the
nonlinearities which characterise individual mother and
fetal cardioelectrical activities [22], [23] will interact
during their propagation through various body layers and
mix with motion artefact, before they are finally picked
up as the ECG signals by electrodes on the skin surface.
It is important to realise that the cardiac signals have to
penetrate through a complex system experiencing
various effects and there is evidence of spectral tuning
between the fetal heartbeat and uterus contractions [26],
[27]. However, only evidence of quadratic coupling
between the mother and fetal ECGs will be given in this
paper due to lack of space. It is worth mentioning that in
previous publications [22], [23] we provided evidence of
non-Gaussian and multiplicative noise in individual
ECGs.
    The main drawback of these techniques, therefore, are
their underlying simplistic assumptions, namely, linear
sources, linear mixtures, and additive model for noise.
Also, we strongly oppose the claim that third-order
cumulants vanish for either mother or fetal ECG [24]. In
fact, the utilisation of the third-order cumulants to
extract fetal heart signals from the maternal ECG has
proven to be a very robust technique provided that the
observed signals are nonlinearly filtered and if necessary
the linearised signals are deconvovled from any
multiplicative  noise before the third-order cumulant
matching process is carried out [24], [25]. Furthermore,
only 1-d diagonal slice is needed for the identification
and reconstruction process [25], [30]. These publications
prove beyond doubt that the pdfs for both mother and
fetal ECGs are not even and third-order cumulants do
exist.

I.4 Nonlinear Mixing Update
    For nonlinear mixing models, many difficulties occur
and both the linear ICA theory and existing linear
demixing algorithms are no longer applicable because of
the complexity of nonlinear characteristics. In addition,
there is no guarantee for the uniqueness of the solution
of nonlinear blind source separation unless additional
constraints are imposed on the mixing transformation
[11].
    So far several authors studied the difficult problem of
the nonlinear blind source separation and proposed a few
efficient demixing algorithms [11]-[14], [15-19]. In
addition, the extension of related linear ICA theories to
the context of nonlinear mixtures has resulted in the
development of nonlinear ICA. The so-called nonlinear
ICA is to employ a nonlinear function to transform the
nonlinear mixtures such that the outputs become
statistically independent after the transformation.
However, this transformation is not unique without some
specific constraints on the function of nonlinear mixing.
If s1 and s2 are two independent random variables, then
f(s1) and g(s2) are also statistically independent
regardless of the nonlinear functions f and g (see Fig. 1).
At this junction we stress that if s1 and s2 are themselves
nonlinear then we suggest a total review to the present
nonlinear ICA theory.

Fig. 1: Nonlinear mixing and separating systems for blind signal
separation.

I.5 Framework for Our Nonlinear Model
    We have succeeded in nonlinearly modelling fetal and
mother ECGs, and in conformal mapping their mixing
structures using an embedded Volterra-like structures
with extended memory [28]. Modifications to the
memory of these structures have been introduced to cater
for nonstationarity [29]. In the next section we provide
evidence of nonlinear quadratic coupling between
mother and fetal respective ECGs and nonstationarity.
This is followed by attempting to exploit linear ICA in
mother/fetal source separation using eight electrodes and
resulting in several misses during events of synchronised
mother/fetal QRS complexes and P-waves. In general, in
the context of linear ICA, it is assumed that each sensor
receives a mixture of all the source signals: if there are
fewer sources than sensors the received mixture of
signals is linearly invertible: ideally the separating
matrix should approximate the inverse of the mixing
matrix.

II. RESULTS
Data Acquisition (I) for the purpose of identification of
quadratic coupling and the concomitant   nonstationarity
    The data collection process included obtaining data
from pregnant women at various stages of gestation.
Abdominal electromyographic signals were obtained
with consent of women using a pair of electrodes,
Sonicaid 8000, a Pentium II PC and an interface card.
Figs. 2 and 3 are self explanatory and show clear
manifestations of quadratic coupling and nonstationarity
through the exploitation of the bicoherence squared of
transabdominally measured ECGs when the QRS
complexes and P-waves of mother/fetal overlap. The
scalp electrode was deemed necessary and was used as a
marker for fetal heartbeats. Fig. 5 shows blind source
separation results after carrying out a novel nonlinear
identification procedure on the data of Fig. 4(a), using an
embedded Volterra-like structure with an extended
memory and modified to cater for time-variant
nonlinearity. Three key channels are shown after the
identification of the previously missing first, fourth, and
seventh fetal heartbeats [28], [29].

Data Acquisition (II) for the purpose of repeating linear
Independent Component Analysis
    As in Data acquisition (I) but the number of surface
electrodes is eight (minimum).
    Linear ICA Results were obtained following the same
procedures and algorithms in [4] and are shown in    Fig.
4. Note that the first, fourth and seventh fetal signals
have not been identified and marked X in Fig. 4(b). The
missing fetal complexes are almost invariably coincident

s x y

f(s) g(x,θ)

Unknown mixing system Separating system



with maternal QRS complexes or P-waves. These
missing fetal complexes were recovered using an
embedded Volterra-like structure with an extended
memory and modifed to cater for time-variant
nonlinearity [28], [29].

III. CONCLUSIONS
We have extolled one virtue and several vices of
exploiting linear independent component analysis in
separating mother and fetal electrocardiogram sources
from cotaneous measurements. Linear ICA works well in
separating mother and fetal sources under two
conditions, namely, high signal-to-noise ratios and
nonoverlapping mother/fetal QRS complexes and P-
waves. We provided evidence of quadratic coupling
between the mother and fetal electro-cardiograms which
increases with the proximity of the occurrences of their
respective QRS complexes and P-waves. This results in
nonstationarity which is manifested in the OT triangle of
the bicoherence squared. We have shown that, by giving
one typical result due to lack of space, in as many cases
as more than 20% in the 100,000 maternal cardiac cycles
obtained from clinical trials, synchronised mother/fetal
QRS complexes can not be detected using linear ICA.
The need for higher-order statistics in linear/nonlinear
independent component analysis does not preclude using
the third-order cumulants in the concerned problem. For
moderate noise (antepartum) and when the uterus is not
contracting fiercefully as in labour, the separation is
feasible resorting only to second-order statistics provided
that nonlinearity is removed from the transabdominally
measured ECGs.
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Figure 2: Simultaneous recordings of maternal chest ECG (top), fetal scalp ECG (middle) and transabdominal ECG (bottom). (a) The fetal and
maternal QRS complexes severely overlapping (synchronised). (c) Fetal QRS-on-ST segment. The second fetal QRS complex within the
maternal cycle coincides with her P-wave. (e) Fetal QRS-on-ST segment. The second fetal QRS complex within the maternal cycle coincides
with her P-wave.
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Figure 3: Exploitation of the bicoherence squared of simultaneous recordings (see Figure 2) of maternal chest ECG (top rows in (a)-(b)),
transabdominal ECG (bottom rows in (a)-(b)), and fetal scalp ECG (middle rows in (a)-(b)), to detect quadratic coupling and nonstationarity
particularly during events of synchronised maternal and fetal QRS complexes and P-waves. (a) Diagonal slices and (b) the corresponding
contours with arrowheads pointing at activities in the OT region indicative of non-stationarity [16].
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Fig 4: Simultaneous recordings of maternal and fetal ECGs.
(a) Maternal chest (top), fetal scalp (middle) and transabdominal ECG
signals of length 2500 samples including five maternal cycles and 9
fetal cycles. The fetal scalp recording was deemed necessary and was
used as a marker for fetal heartbeats.
(b) Outputs of 8 channel after applying blind source separation using
second-order (SO) and fourth-order (FO) cumulants of the data.
Channels 1 and 2 show the maternal signal. Channels 3, 4 and 5 are
amplified to show the fetal signals. Note the first, fourth and seventh
fetal signals have not been identified and are marked X. The missing
fetal complexes are almost invariably coincident with either maternal
QRS complexes or P-waves. The remaining channels, namely, 6, 7 and
8 are noise channels.
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Figure 5: Blind source separation results after carying out a novel
nonlinear identification procedure on the data of Fig. 4 (a), using an
embedded Volterra-like structure with an extended memory and
modified to cater for time-variant nonlinearity. Three key channels are
shown after the identification of the previously missing first, fourth and
seventh fetal heartbeats (arrowheads).
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